Skip to main content
Ctrl+K

skmatter v0.4.dev29+ga1a316a

  • Getting started
  • Installation
  • API Reference
  • Examples
  • Contributing
    • Changelog
    • References
  • GitHub
  • Getting started
  • Installation
  • API Reference
  • Examples
  • Contributing
  • Changelog
  • References
  • GitHub

Section Navigation

  • PCovR and KernelPCovR
    • Choosing Different Regressors for PCovR
    • Construct a PCovR Map
    • The Importance of Data Scaling in PCovR / KernelPCovR
    • The Benefits of Kernel PCovR for the WHO Dataset
  • PCovC and KernelPCovC
    • Comparing PCovC with PCA and LDA
    • KPCovC Hyperparameter Tuning
    • PCovC Hyperparameter Tuning
    • Comparing KPCovC with KPCA
  • Feature and Sample Selection
    • Using scikit-matter selectors with scikit-learn pipelines
    • PCovR-Inspired Feature Selection
    • Generalized Convex Hull construction for the polymorphs of ROY
    • Feature Selection on the WHO Dataset
  • Regression
    • Regression with orthogonal projector/matrices
    • Ridge2FoldCV for data with low effective rank
  • Feature Reconstruction Measures
    • Pointwise Local Reconstruction Error
    • Global Feature Reconstruction Error (GFRE) and Distortion (GFRD)
    • Pointwise GFRE applied on RKHS features
  • Neighbors
    • Sparse KDE examples
    • Probabilistic Analysis of Molecular Motifs (PAMM)
  • Examples

Examples#

For a thorough tutorial of the methods introduced in scikit-matter, we suggest you check out the pedagogic notebooks in our companion project kernel-tutorials.

For running the examples locally install scikit-matter with the examples optional dependencies.

pip install skmatter[examples]
  • PCovR and KernelPCovR
  • PCovC and KernelPCovC
  • Feature and Sample Selection
  • Regression
  • Feature Reconstruction Measures
  • Neighbors

previous

Utility Classes

next

PCovR and KernelPCovR

Edit on GitHub

This Page

  • Show Source

© Copyright 2025, Rose K. Cersonsky, Guillaume Fraux, Sergei Kliavinek, Alexander Goscinski, Benjamin A. Helfrecht, Victor P. Principe, Philip Loche, Michele Ceriotti.

Created using Sphinx 8.2.3.

Built with the PyData Sphinx Theme 0.16.1.