Source code for skmatter.decomposition._kernel_pcovc

import numpy as np

from sklearn import clone
from sklearn.svm import LinearSVC
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.linear_model import (
    Perceptron,
    RidgeClassifier,
    RidgeClassifierCV,
    LogisticRegression,
    LogisticRegressionCV,
    SGDClassifier,
)
from sklearn.utils import check_array
from sklearn.utils.validation import check_is_fitted, validate_data
from sklearn.linear_model._base import LinearClassifierMixin
from sklearn.utils.multiclass import check_classification_targets, type_of_target

from skmatter.preprocessing import KernelNormalizer
from skmatter.utils import check_cl_fit
from skmatter.decomposition import _BaseKPCov


[docs] class KernelPCovC(LinearClassifierMixin, _BaseKPCov): r"""Kernel Principal Covariates Classification (KPCovC). KPCovC is a modification on the PrincipalCovariates Classification proposed in [Jorgensen2025]_. It determines a latent-space projection :math:`\mathbf{T}` which minimizes a combined loss in supervised and unsupervised tasks in the reproducing kernel Hilbert space (RKHS). This projection is determined by the eigendecomposition of a modified gram matrix :math:`\mathbf{\tilde{K}}` .. math:: \mathbf{\tilde{K}} = \alpha \mathbf{K} + (1 - \alpha) \mathbf{Z}\mathbf{Z}^T where :math:`\alpha` is a mixing parameter, :math:`\mathbf{K}` is the input kernel of shape :math:`(n_{samples}, n_{samples})` and :math:`\mathbf{Z}` is a matrix of class confidence scores of shape :math:`(n_{samples}, n_{classes})` Parameters ---------- mixing : float, default=0.5 mixing parameter, as described in PCovC as :math:`{\alpha}` n_components : int, float or str, default=None Number of components to keep. if n_components is not set all components are kept:: n_components == n_samples svd_solver : {'auto', 'full', 'arpack', 'randomized'}, default='auto' If auto : The solver is selected by a default policy based on `X.shape` and `n_components`: if the input data is larger than 500x500 and the number of components to extract is lower than 80% of the smallest dimension of the data, then the more efficient 'randomized' method is enabled. Otherwise the exact full SVD is computed and optionally truncated afterwards. If full : run exact full SVD calling the standard LAPACK solver via `scipy.linalg.svd` and select the components by postprocessing If arpack : run SVD truncated to n_components calling ARPACK solver via `scipy.sparse.linalg.svds`. It requires strictly 0 < n_components < min(X.shape) If randomized : run randomized SVD by the method of Halko et al. classifier: `estimator object` or `precomputed`, default=None classifier for computing :math:`{\mathbf{Z}}`. The classifier should be one of the following: - ``sklearn.linear_model.LogisticRegression()`` - ``sklearn.linear_model.LogisticRegressionCV()`` - ``sklearn.svm.LinearSVC()`` - ``sklearn.discriminant_analysis.LinearDiscriminantAnalysis()`` - ``sklearn.linear_model.RidgeClassifier()`` - ``sklearn.linear_model.RidgeClassifierCV()`` - ``sklearn.linear_model.Perceptron()`` If a pre-fitted classifier is provided, it is used to compute :math:`{\mathbf{Z}}`. If None, ``sklearn.linear_model.LogisticRegression()`` is used as the classifier. kernel : {"linear", "poly", "rbf", "sigmoid", "precomputed"} or callable, default="linear" Kernel. gamma : {'scale', 'auto'} or float, default=None Kernel coefficient for rbf, poly and sigmoid kernels. Ignored by other kernels. degree : int, default=3 Degree for poly kernels. Ignored by other kernels. coef0 : float, default=1 Independent term in poly and sigmoid kernels. Ignored by other kernels. kernel_params : mapping of str to any, default=None Parameters (keyword arguments) and values for kernel passed as callable object. Ignored by other kernels. center : bool, default=False Whether to center any computed kernels fit_inverse_transform : bool, default=False Learn the inverse transform for non-precomputed kernels. (i.e. learn to find the pre-image of a point) tol : float, default=1e-12 Tolerance for singular values computed by svd_solver == 'arpack' and for matrix inversions. Must be of range [0.0, infinity). n_jobs : int, default=None The number of parallel jobs to run. :obj:`None` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. iterated_power : int or 'auto', default='auto' Number of iterations for the power method computed by svd_solver == 'randomized'. Must be of range [0, infinity). random_state : int, :class:`numpy.random.RandomState` instance or None, default=None Used when the 'arpack' or 'randomized' solvers are used. Pass an int for reproducible results across multiple function calls. Attributes ---------- classifier : estimator object The linear classifier passed for fitting. If pre-fitted, it is assummed to be fit on a precomputed kernel :math:`\mathbf{K}` and :math:`\mathbf{Y}`. z_classifier_ : estimator object The linear classifier fit between the computed kernel :math:`\mathbf{K}` and :math:`\mathbf{Y}`. classifier_ : estimator object The linear classifier fit between :math:`\mathbf{T}` and :math:`\mathbf{Y}`. pt__: numpy.darray of size :math:`({n_{components}, n_{components}})` pseudo-inverse of the latent-space projection, which can be used to contruct projectors from latent-space pkt_: numpy.ndarray of size :math:`({n_{samples}, n_{components}})` the projector, or weights, from the input kernel :math:`\mathbf{K}` to the latent-space projection :math:`\mathbf{T}` pkz_: numpy.ndarray of size :math:`({n_{samples}, })` or :math:`({n_{samples}, n_{classes}})` the projector, or weights, from the input kernel :math:`\mathbf{K}` to the class confidence scores :math:`\mathbf{Z}` ptz_: numpy.ndarray of size :math:`({n_{components}, })` or :math:`({n_{components}, n_{classes}})` the projector, or weights, from the latent-space projection :math:`\mathbf{T}` to the class confidence scores :math:`\mathbf{Z}` ptx_: numpy.ndarray of size :math:`({n_{components}, n_{features}})` the projector, or weights, from the latent-space projection :math:`\mathbf{T}` to the feature matrix :math:`\mathbf{X}` X_fit_: numpy.ndarray of shape (n_samples, n_features) The data used to fit the model. This attribute is used to build kernels from new data. Examples -------- >>> import numpy as np >>> from skmatter.decomposition import KernelPCovC >>> from sklearn.preprocessing import StandardScaler >>> X = np.array([[-2, 3, -1, 0], [2, 0, -3, 1], [3, 0, -1, 3], [2, -2, 1, 0]]) >>> X = StandardScaler().fit_transform(X) >>> Y = np.array([[2], [0], [1], [2]]) >>> kpcovc = KernelPCovC( ... mixing=0.1, ... n_components=2, ... kernel="rbf", ... gamma=1, ... ) >>> kpcovc.fit(X, Y) KernelPCovC(gamma=1, kernel='rbf', mixing=0.1, n_components=2) >>> kpcovc.transform(X) array([[-4.45970689e-01, 8.95327566e-06], [ 4.52745933e-01, 5.54810948e-01], [ 4.52881359e-01, -5.54708315e-01], [-4.45921092e-01, -7.32157649e-05]]) >>> kpcovc.predict(X) array([2, 0, 1, 2]) >>> kpcovc.score(X, Y) 1.0 """ # NoQa: E501 def __init__( self, mixing=0.5, n_components=None, svd_solver="auto", classifier=None, kernel="linear", gamma=None, degree=3, coef0=1, kernel_params=None, center=False, fit_inverse_transform=False, tol=1e-12, n_jobs=None, iterated_power="auto", random_state=None, ): super().__init__( mixing=mixing, n_components=n_components, svd_solver=svd_solver, tol=tol, iterated_power=iterated_power, random_state=random_state, center=center, kernel=kernel, gamma=gamma, degree=degree, coef0=coef0, kernel_params=kernel_params, n_jobs=n_jobs, fit_inverse_transform=fit_inverse_transform, ) self.classifier = classifier
[docs] def fit(self, X, Y, W=None): r"""Fit the model with X and Y. A computed kernel K is derived from X, and W is taken from the coefficients of a linear classifier fit between K and Y to compute Z: .. math:: \mathbf{Z} = \mathbf{K} \mathbf{W} We then call either `_fit_feature_space` or `_fit_sample_space`, using Z as our approximation of Y. Finally, we refit a classifier on T and Y to obtain :math:`\mathbf{P}_{TZ}`. Parameters ---------- X : numpy.ndarray, shape (n_samples, n_features) Training data, where n_samples is the number of samples and n_features is the number of features. It is suggested that :math:`\mathbf{X}` be centered by its column- means and scaled. If features are related, the matrix should be scaled to have unit variance, otherwise :math:`\mathbf{X}` should be scaled so that each feature has a variance of 1 / n_features. Y : numpy.ndarray, shape (n_samples,) Training data, where n_samples is the number of samples. W : numpy.ndarray, shape (n_features, n_classes) Classification weights, optional when classifier = `precomputed`. If not passed, it is assumed that the weights will be taken from a linear classifier fit between K and Y. Returns ------- self: object Returns the instance itself. """ X, Y = validate_data(self, X, Y, y_numeric=False) check_classification_targets(Y) self.classes_ = np.unique(Y) super().fit(X) K = self._get_kernel(X) if self.center: self.centerer_ = KernelNormalizer() K = self.centerer_.fit_transform(K) compatible_classifiers = ( LogisticRegression, LogisticRegressionCV, LinearSVC, LinearDiscriminantAnalysis, RidgeClassifier, RidgeClassifierCV, SGDClassifier, Perceptron, ) if self.classifier not in ["precomputed", None] and not isinstance( self.classifier, compatible_classifiers ): raise ValueError( "Classifier must be an instance of `" f"{'`, `'.join(c.__name__ for c in compatible_classifiers)}`" ", or `precomputed`" ) if self.classifier != "precomputed": if self.classifier is None: classifier = LogisticRegression() else: classifier = self.classifier # for convergence warnings if hasattr(classifier, "max_iter") and ( classifier.max_iter is None or classifier.max_iter < 500 ): classifier.max_iter = 500 # Check if classifier is fitted; if not, fit with precomputed K self.z_classifier_ = check_cl_fit(classifier, K, Y) W = self.z_classifier_.coef_.T.reshape(K.shape[1], -1) else: # If precomputed, use default classifier to predict Y from T classifier = LogisticRegression(max_iter=500) if W is None: W = LogisticRegression().fit(K, Y).coef_.T W = W.reshape(K.shape[1], -1) Z = K @ W self._fit(K, Z, W) self.ptk_ = self.pt__ @ K if self.fit_inverse_transform: self.ptx_ = self.pt__ @ X self.classifier_ = clone(classifier).fit(K @ self.pkt_, Y) self.ptz_ = self.classifier_.coef_.T self.pkz_ = self.pkt_ @ self.ptz_ if len(Y.shape) == 1 and type_of_target(Y) == "binary": self.pkz_ = self.pkz_.reshape( K.shape[1], ) self.ptz_ = self.ptz_.reshape( self.n_components_, ) self.components_ = self.pkt_.T # for sklearn compatibility return self
[docs] def predict(self, X=None, T=None): """Predicts the property labels using classification on T.""" check_is_fitted(self, ["pkz_", "ptz_"]) if X is None and T is None: raise ValueError("Either X or T must be supplied.") if X is not None: X = validate_data(self, X, reset=False) K = self._get_kernel(X, self.X_fit_) if self.center: K = self.centerer_.transform(K) return self.classifier_.predict(K @ self.pkt_) else: return self.classifier_.predict(T)
[docs] def transform(self, X): """Apply dimensionality reduction to X. ``X`` is projected on the first principal components as determined by the modified Kernel PCovR distances. Parameters ---------- X : numpy.ndarray, shape (n_samples, n_features) New data, where n_samples is the number of samples and n_features is the number of features. """ return super().transform(X)
[docs] def inverse_transform(self, T): r"""Transform input data back to its original space. .. math:: \mathbf{\hat{X}} = \mathbf{T} \mathbf{P}_{TX} = \mathbf{K} \mathbf{P}_{KT} \mathbf{P}_{TX} Similar to KPCA, the original features are not always recoverable, as the projection is computed from the kernel features, not the original features, and the mapping between the original and kernel features is not one-to-one. Parameters ---------- T : numpy.ndarray, shape (n_samples, n_components) Projected data, where n_samples is the number of samples and n_components is the number of components. Returns ------- X_original : numpy.ndarray, shape (n_samples, n_features) """ return super().inverse_transform(T)
[docs] def decision_function(self, X=None, T=None): r"""Predicts confidence scores from X or T. .. math:: \mathbf{Z} = \mathbf{T} \mathbf{P}_{TZ} = \mathbf{K} \mathbf{P}_{KT} \mathbf{P}_{TZ} = \mathbf{K} \mathbf{P}_{KZ} Parameters ---------- X : ndarray, shape(n_samples, n_features) Original data for which we want to get confidence scores, where n_samples is the number of samples and n_features is the number of features. T : ndarray, shape (n_samples, n_components) Projected data for which we want to get confidence scores, where n_samples is the number of samples and n_components is the number of components. Returns ------- Z : numpy.ndarray, shape (n_samples,) or (n_samples, n_classes) Confidence scores. For binary classification, has shape `(n_samples,)`, for multiclass classification, has shape `(n_samples, n_classes)` """ check_is_fitted(self, attributes=["pkz_", "ptz_"]) if X is None and T is None: raise ValueError("Either X or T must be supplied.") if X is not None: X = validate_data(self, X, reset=False) K = self._get_kernel(X, self.X_fit_) if self.center: K = self.centerer_.transform(K) # Or self.classifier_.decision_function(K @ self.pxt_) return K @ self.pkz_ + self.classifier_.intercept_ else: T = check_array(T) return T @ self.ptz_ + self.classifier_.intercept_