Utility Classes =============== .. _PCovR_dist-api: Modified Gram Matrix :math:`\mathbf{\tilde{K}}` ----------------------------------------------- .. autofunction:: skmatter.utils.pcovr_kernel Modified Covariance Matrix :math:`\mathbf{\tilde{C}}` ----------------------------------------------------- .. autofunction:: skmatter.utils.pcovr_covariance Orthogonalizers for CUR ----------------------- When computing non-iterative CUR, it is necessary to orthogonalize the input matrices after each selection. For this, we have supplied a feature and a sample orthogonalizer for feature and sample selection. .. autofunction:: skmatter.utils.X_orthogonalizer .. autofunction:: skmatter.utils.Y_feature_orthogonalizer .. autofunction:: skmatter.utils.Y_sample_orthogonalizer Random Partitioning with Overlaps --------------------------------- .. autofunction:: skmatter.model_selection.train_test_split Effective Dimension of Covariance Matrix ---------------------------------------- .. autofunction:: skmatter.utils.effdim Oracle Approximating Shrinkage ------------------------------ .. autofunction:: skmatter.utils.oas